Skip to contents

Simplify multiple simulations and group them after computing quantile and median value (per species, fleet, metier, age, year). A selected simulation is kept to illustrate a possible way.

Usage

IAM.format_quant(var_format, probs = c(0.25, 0.75), select_indiv = 1)

Arguments

var_format

Tibble or data.frame format produced by IAM.format.

probs

Quantile arguments for the values distribution once grouped. Vector of 2 numeric values in [0, 1].

select_indiv

Single numeric value which allow to conserve a single simulation value for example. Default is 1.

Value

Format : long format for ggplot and dplyr analysis to facilitate filter and summary computations. If the variable is not defined for a specific dimension (column), this column is filled with NA.

sim_name

Simulation name. chr.

variable

Single value repeated, but is needed if multiple variables are assembled with bind_row(). chr vector

species

Species names, can contain dynamic and static species depending on the variable selected.. chr vector

fleet

Fleet names. fct vector

metier

Metier names. fct vector

age

Ages for dynamic species. fct vector

year

year step for the simulation. dbl vector

quant1

First quantile from probs argument.

quant2

Second quantile from probs argument.

median

Median computed from the grouped values.

value

Value of the variable for every column place indicated on the same row. dbl vector

Author

Maxime Jaunatre

Examples

library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union
library(magrittr)

data("IAM_input_2009")
data("IAM_argum_2009")
sim_statu_quo <- IAM::IAM.model(objArgs = IAM_argum_2009, objInput = IAM_input_2009)
res1 <- IAM.format(sim_statu_quo, c("SSB"), n = 1) %>%
  dplyr::filter(species == "ARC", year < 2012)
res2 <- mutate(res1, n = 2, value = value + rnorm(1, sd = 100))
res <- rbind(res1, res2)

IAM.format_quant(res, c(0.025, 0.975), 2)
#> # A tibble: 3 × 12
#>   sim_name variable species fleet metier age    year quant1 quant2 median  value
#>   <chr>    <chr>    <chr>   <chr> <chr>  <chr> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#> 1 NA       SSB      ARC     NA    NA     NA     2009 18723. 18747. 18735. 18747.
#> 2 NA       SSB      ARC     NA    NA     NA     2010 17991. 18014. 18002. 18015.
#> 3 NA       SSB      ARC     NA    NA     NA     2011 17221. 17244. 17232. 17244.
#> # … with 1 more variable: nsim <int>